Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 10(24): e2302935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37357989

RESUMO

Treating potential polluted water sources is urgent and challenging, especially for natural water sources. Numerous research groups focus on either smart water monitoring or new adsorbent. However, either aspect alone is insufficient for complex nature water source treatment. Here, integrating the state-of-art machine learning technique, a sustainable silk-based bioadsorbent, and wireless Internet of Things, an integrated automated drone-delivery solar driven onsite water monitoring & treatment system (WMTS) for the contaminated nature water sources is developed. In short, the embedded sensors and microprogrammed control unit capture and upload the real-time monitoring data to the cloud server for data analysis and optimized treatment strategy. Meanwhile, a grid map system based on the satellite remote sensing images directs the minimum number of WMTS units to cover the entire polluted region. Finally, unmanned aerial vehicles provide autonomous dispatch, operation, and maintenance, especially in hard-to-reach sites. Overall, this work offers a general, sustainable, energy-efficient, and closed-loop solution toward efficiently alerting and on-site treating nature water source contamination.

2.
Front Oncol ; 12: 924245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35982952

RESUMO

Radiological imaging techniques, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are the standard-of-care non-invasive diagnostic approaches widely applied in neuro-oncology. Unfortunately, accurate interpretation of radiological imaging data is constantly challenged by the indistinguishable radiological image features shared by different pathological changes associated with tumor progression and/or various therapeutic interventions. In recent years, machine learning (ML)-based artificial intelligence (AI) technology has been widely applied in medical image processing and bioinformatics due to its advantages in implicit image feature extraction and integrative data analysis. Despite its recent rapid development, ML technology still faces many hurdles for its broader applications in neuro-oncological radiomic analysis, such as lack of large accessible standardized real patient radiomic brain tumor data of all kinds and reliable predictions on tumor response upon various treatments. Therefore, understanding ML-based AI technologies is critically important to help us address the skyrocketing demands of neuro-oncology clinical deployments. Here, we provide an overview on the latest advancements in ML techniques for brain tumor radiomic analysis, emphasizing proprietary and public dataset preparation and state-of-the-art ML models for brain tumor diagnosis, classifications (e.g., primary and secondary tumors), discriminations between treatment effects (pseudoprogression, radiation necrosis) and true progression, survival prediction, inflammation, and identification of brain tumor biomarkers. We also compare the key features of ML models in the realm of neuroradiology with ML models employed in other medical imaging fields and discuss open research challenges and directions for future work in this nascent precision medicine area.

3.
Front Microbiol ; 11: 351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210942

RESUMO

Yersinia enterocolitica is generally considered an important food-borne pathogen worldwide, especially in the European Union. A lytic Yersinia phage X1 (Viruses; dsDNA viruses, no RNA stage; Caudovirales; and Myoviridae) was isolated. Phage X1 showed a broad host range and could effectively lyse 27/51 Y. enterocolitica strains covering various serotypes that cause yersiniosis in humans and animals (such as serotype O3 and serotype O8). The genome of this phage was sequenced and analyzed. No toxin, antibiotic-resistance or lysogeny related modules were found in the genome of phage X1. Studies of phage stability confirmed that X1 had a high tolerance toward a broad range of temperatures (4-60°C) and pH values (4-11) for 1 h. The ability to resist harsh acidic conditions and enzymatic degradation in vitro demonstrated that phage X1 is suitable for oral administration, and in particular, that this phage can pass the stomach barrier and efficiently reach the intestine in vivo without losing infectious ability. The potential of this phage against Y. enterocolitica infection in vitro was studied. In animal experiments, a single oral administration of phage X1 at 6 h post infection was sufficient to eliminate Y. enterocolitica in 33.3% of mice (15/45). In addition, the number of Y. enterocolitica strains in the mice was also dramatically reduced to approximately 103 CFU/g after 18 h compared with 107 CFU/g in the mice without phage treatment. Treatment with phage X1 showed significant improvement by intestinal histopathologic observations. Moreover, proinflammatory cytokine levels (IL-6, TNF-α, and IL-1ß) were significantly reduced (P < 0.05). These results indicate that phage X1 is a promising candidate to control infection by Y. enterocolitica in vivo.

4.
ACS Appl Mater Interfaces ; 11(13): 12978-12985, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30855931

RESUMO

High-efficient light-management nanostructures are critical to various optical applications. However, in practical implementation, these structures have been limited by the need to resist mechanical abrasion, erosion, chemical exposure, ultraviolet radiation, and performance deterioration by dust accumulation. To address these critical technological gaps, we herein report a conceptually different approach, employing a hierarchical nanostructure embedded with multilayer LightScribe-etched graphene, capable of omnidirectional broadband light management with both high optical transparency (>90%) and high haze (∼89%), ideal for photovoltaics, which simultaneously demonstrates extraordinary robustness to various environmental challenges ranging from mechanical abrasion, UV exposure, corrosions, outdoor exposures to resistance to dust accumulation. The reported nanostructures can be readily combined to any optoelectrical device's surface, and the practical tests on coated amorphous silicon solar cells show that it outperforms the state-of-the-art commercial coating by maintaining both 10% efficiency improvement along with the prevention of dust accumulation in contrast to 56.2% efficiency degradation with the commercial coating after the 1 month outdoor test.

5.
Vet Microbiol ; 229: 72-80, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30642601

RESUMO

Staphylococcus aureus is one of the most important pathogens causing rabbit necrotizing pneumonia and brings huge economic losses to rabbit production. This study investigated the preventive effect of a phage on rabbit necrotizing pneumonia caused by S. aureus. S. aureus S6 was isolated from the lungs of rabbits suffering necrotizing pneumonia and identified. A novel phage named VB-SavM-JYL01 was isolated by using S. aureus S6 as a host and showed a broader host range than the phages GH15 and K. The genome of VB-SavM-JYL01 lacked bacterial virulence-, antibiotic resistance- and lysogenesis-related genes. A single intranasal administration of VB-SavM-JYL01 (3 × 109 PFU) could effectively improve the survival rate at 48 h to 90% (9/10) compared with the survival rate of 10% and 80% observed with the PBS or linezolid treatment, respectively. The bacterial count in the lungs of rabbits treated with the phage VB-SavM-JYL01 was 4.18 × 104 CFU/g at 24 h, which was significantly decreased compared to that of rabbits treated with PBS (7.38 × 107 CFU/g) or linezolid (3.12 × 105 CFU/g). The phage treatment significantly alleviated lung tissue damage. The levels of total proteins, Panton-Valentine leukocidin (PVL), alpha-toxin (Hla) and cytokines in the lungs of the rabbits treated with the phage were significantly lower than those of the rabbits treated with PBS and similar to those of the rabbits treated with linezolid. These data demonstrate the potential utility of phage as an alternative for preventing rabbit necrotizing pneumonia caused by S. aureus.


Assuntos
Pneumonia Necrosante/veterinária , Pneumonia Estafilocócica/veterinária , Coelhos/microbiologia , Fagos de Staphylococcus , Staphylococcus aureus/virologia , Animais , Feminino , Pneumonia Necrosante/microbiologia , Pneumonia Necrosante/prevenção & controle , Pneumonia Estafilocócica/prevenção & controle
6.
RSC Adv ; 9(70): 40792-40799, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-35540040

RESUMO

Simultaneous high transparency and high haze are necessary for high-efficiency optical, photonic, and optoelectronic applications. However, a typical highly transparent film lacks high optical haze or vice versa. Here, we report a silk fibroin-based optical film that exhibits both ultrahigh optical transparency (>93%) and ultrahigh optical transmission haze (>65%). Also, in combination with the soft lithography method, different nanostructured silk fibroin films are presented and their optical properties are characterized as well. To demonstrate its exceptional performance in both high transmission and high optical haze, we combine the silk fibroin with the silicon photodiode and show that the efficiency can be increased by 6.96% with the silk fibroin film without patterns and 14.9% with the nanopatterned silk fibroin film. Silk provides excellent mechanical, optical, and electrical properties, and the reported high-performance silk fibroin can enable the development of next-generation biocompatible eco-friendly flexible electronic and optical devices.

7.
Phys Rev E ; 93(5): 052409, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27300926

RESUMO

Concentration polarization can be induced by the unique ion-perm selectivity of small nanopores, leading to a salt concentration gradient across nanopores. This concentration gradient can create diffusio-osmosis and induce an electric field, affecting ionic currents on DNA that translocates through a nanopore. Here this influence is theoretically investigated by solving the continuum Poisson-Nernst-Planck model for different salt concentrations, DNA surface charge densities, and pore properties. By implementing the perturbation method, we can explicitly compute the contribution of concentration polarization to the ionic current. The induced electric field by concentration polarization is opposite to the imposed electric field and decreases the migration current, and the induced diffusio-osmosis can decrease the convection current as well. Our studies suggest that the importance of the concentration polarization can be determined by the parameter λ/G where λ is the double-layer thickness and G is the gap size. When λ/G is larger than a critical value, the influence of concentration polarization becomes more prominent. This conclusion is supported by the studies on the dependence of the ionic current on salt concentration and pore properties, showing that the difference between two models with and without accounting for concentration polarization is larger for low salts and small pores, which correspond to larger λ/G.


Assuntos
DNA/química , DNA/metabolismo , Nanoporos , Fenômenos Eletrofisiológicos , Sais/química
8.
J Fluid Mech ; 724: 69-94, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24910471

RESUMO

We treat the dielectric decrement induced by excess ion polarization as a source of ion specificity and explore its impact on electrokinetics. We employ a modified Poisson-Nernst-Planck (PNP) equations accounting for the dielectric decrement. The dielectric decrement is determined by the excess ion polarization parameter α and when α = 0 the standard PNP model is recovered. Our model shows that ions saturate at large zeta potentials (ζ). Because of ion saturation, a condensed counterion layer forms adjacent to the charged surface, introducing a new length scale, the thickness of the condensed layer (lc ). For the electro-osmotic mobility, the dielectric decrement weakens the electro-osmotic flow owing to the decrease of the dielectric permittivity. At large ζ, when α ≠ 0, the electro-osmotic mobility is found to be proportional to ζ/2, in contrast to ζ predicted by the standard PNP model. This is attributed to ion saturation at large ζ. In terms of the electrophoretic mobility Me , we carry out both an asymptotic analysis in the thin-double-layer limit and solve the full modified PNP model to compute Me . Our analysis reveals that the impact of the dielectric decrement is intriguing. At small and moderate ζ, the dielectric decrement decreases Me with an increasing α. At large ζ, it is well known that the surface conduction becomes significant and plays an important role in determining Me . It is observed that the dielectric decrement effectively reduces the surface conduction. Hence in stark contrast, Me increases as α increases. Our predictions of the contrast dependence of the mobility on α at different zeta potentials qualitatively agree with experimental results on the dependence of the mobility among ions and provide a possible explanation for such ion specificity. Finally, the comparisons between the thin-double-layer asymptotic analysis and the full simulations of the modified PNP model suggest that at large ζ the validity of the thin-double-layer approximation is determined by lc rather than the traditional Debye length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...